21 research outputs found

    Security in power system state estimation

    Get PDF
    With the power system evolving from passive to a more active system there is an incorporation of information and communication infrastructures in the system. The measurement data are more prone to tampering from attackers for mala fide intentions. Therefore, security and reliability of distribution have become major concerns. State estimation (SE), being the core function of the energy/distribution management system (EMS/DMS), has become necessary in order to operate the system efficiently and in a controlled manner. Although SE is a well-known task in transmission systems, it is usually not a common task in unbalanced distribution systems due to the difference in design and operation philosophy. This thesis addresses these issues and investigates the distribution system state estimation with unbalanced full three-phase modelling. The formulation, based on weighted least squares estimation, is extended to include the open/closed switches as equality constraints. This research then explores the vulnerabilities of the state estimation problem against attacks associated with leverage measurements. Detecting gross error particularly for leverage measurements have been found to be difficult due to low residuals. The thesis presents and discusses the suitability of externally studentized residuals compared to traditional residual techniques. Additionally, the masking/swamping phenomenon associated with multiple leverages makes the identification of gross error even more difficult. This thesis proposes a robust method of identifying the high leverages and then detecting gross error when the leverage measurements are compromised. All algorithms are validated in different IEEE test systems.Open Acces

    Image Exploitation-A Forefront Area for UAV Application

    Get PDF
    Image exploitation, an innovative image utilisation program uses high revisit multisensor, multiresolution imagery from unmanned air vehicle or other reconnaissance platform for intelligent information gathering. This paper describes the imagc exploitation system developed at the Aeronautical Dcvclopment Establishment, Bangalore, for the remotely piloted vehicle (RPV) Nishonr and highlights two major areas (i) In-flight imagc exploitation, and (ii) post-flight imagc cxploitatlon. In-flight imagc study includes real-timeenhancement of images frames during RPV flight. target acquisition. calculation of geo-location of targets, distance and area computation, and image-to-map correspondence. Post-flight image exploitation study includes image restoration, classtfication of terrain, 3-D depth computation using stereo vision and shape from shading techniques. The paper shows results obtained in each of these areas from actual flight trials

    Centralized volt-var optimization strategy considering malicious attack on distributed energy resources control

    Get PDF
    The adoption of information and communication technology (ICT) based centralized volt-var control (VVC) leads to an optimal operation of a distribution feeder. However, it also poses a challenge that an adversary can tamper with the metered data and thus can render the VVC action ineffective. Distribution system state estimation (DSSE) acts as a backbone of centralized VVC. Distributed energy resources (DER) injection measurements constitute leverage measurements from a DSSE point of view. This paper proposes two solutions as a volt var optimization-distribution system state estimation (VVO-DSSE) malicious attack mitigating strategy when the DER injection measurements are compromised. The first solution is based on local voltage regulation controller set-points. The other solution effectively employs historical data or forecast information. The concept is based on a cumulant based probabilistic optimal power flow with the objective of minimizing the expectation of total power losses. The effectiveness of the approach is performed on the 95-bus UK generic distribution system (UKGDS) and validated against Monte Carlo simulations

    Transactions on Smart Grid 1 Bad Data Detection in the Context of Leverage Point Attacks in Modern Power Networks

    Get PDF
    Abstract-This paper demonstrates a concept to detect bad data in state estimation when the leverage measurements are tampered with gross error. The concept is based on separating leverage measurements from non-leverage measurements by a technique called diagnostic robust generalized potential (DRGP), which also takes care of the masking or swamping effect, if any. The methodology then detects the erroneous measurements from the generalized studentized residuals (GSR). The effectiveness of the method is validated with a small illustrative example, standard IEEE 14-bus and 123-bus unbalanced network models and compared with the existing methods. The method is demonstrated to be potentially very useful to detect attacks in smart power grid targeting leverage points in the system. Index Terms-distribution management system (DMS), remote terminal unit (RTU), state estimation (SE), leverage measurements, bad data detection (BDD), generalized studentized residuals (GSR), diagnostic-robust generalized potentials (DRGP

    A probabilistic method for the operation of three-phase unbalanced active distribution networks

    Get PDF
    YesThis paper proposes a probabilistic multi-objective optimization method for the operation of three-phase distribution networks incorporating active network management (ANM) schemes including coordinated voltage control and adaptive power factor control. The proposed probabilistic method incorporates detailed modelling of three-phase distribution network components and considers different operational objectives. The method simultaneously minimizes the total energy losses of the lines from the point of view of distribution network operators (DNOs) and maximizes the energy generated by photovoltaic (PV) cells considering ANM schemes and network constraints. Uncertainties related to intermittent generation of PVs and load demands are modelled by probability density functions (PDFs). Monte Carlo simulation method is employed to use the generated PDFs. The problem is solved using ɛ-constraint approach and fuzzy satisfying method is used to select the best solution from the Pareto optimal set. The effectiveness of the proposed probabilistic method is demonstrated with IEEE 13- and 34- bus test feeders

    14 Examples of How LLMs Can Transform Materials Science and Chemistry: A Reflection on a Large Language Model Hackathon

    Full text link
    Chemistry and materials science are complex. Recently, there have been great successes in addressing this complexity using data-driven or computational techniques. Yet, the necessity of input structured in very specific forms and the fact that there is an ever-growing number of tools creates usability and accessibility challenges. Coupled with the reality that much data in these disciplines is unstructured, the effectiveness of these tools is limited. Motivated by recent works that indicated that large language models (LLMs) might help address some of these issues, we organized a hackathon event on the applications of LLMs in chemistry, materials science, and beyond. This article chronicles the projects built as part of this hackathon. Participants employed LLMs for various applications, including predicting properties of molecules and materials, designing novel interfaces for tools, extracting knowledge from unstructured data, and developing new educational applications. The diverse topics and the fact that working prototypes could be generated in less than two days highlight that LLMs will profoundly impact the future of our fields. The rich collection of ideas and projects also indicates that the applications of LLMs are not limited to materials science and chemistry but offer potential benefits to a wide range of scientific disciplines

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition

    Full text link
    Conformer-based models have become the most dominant end-to-end architecture for speech processing tasks. In this work, we propose a carefully redesigned Conformer with a new down-sampling schema. The proposed model, named Fast Conformer, is 2.8x faster than original Conformer, while preserving state-of-the-art accuracy on Automatic Speech Recognition benchmarks. Also we replace the original Conformer global attention with limited context attention post-training to enable transcription of an hour-long audio. We further improve long-form speech transcription by adding a global token. Fast Conformer combined with a Transformer decoder also outperforms the original Conformer in accuracy and in speed for Speech Translation and Spoken Language Understanding
    corecore